九游会AG登录入口地址
您当前的位置: > 九游会AG登录入口地址 >

科学家揭开电磁子的秘密:晶格振动和自旋如何相互作用

编辑: 时间:2024-01-18 浏览:144

  研究人员通过SwissFEL X 射线自由电子激光器进行的实验,在了解电磁子--固体中的混合激元方面取得了重大进展。他们揭示了晶格振动和自旋如何相互作用,原子运动先于自旋运动。这一发现对于用光超快控制磁性至关重要,对于理解高温超导等复杂物理过程也具有更广泛的意义。

  科学家们利用 SwissFEL X 射线自由电子激光器的独特实验组合柔性制造系统,揭示了晶格振动和自旋在一种称为电磁子的混合激发中的相互作用。这一原子层面的发现为利用光超快操纵磁性铺平了道路。

  在固体的原子晶格内,粒子及其各种特性在被称为集体激发的波状运动中相互配合。当晶格中的原子一起抖动时,这种集体激发被称为声子。同样,当原子自旋--原子的磁化--一起运动时,称为磁子。

  情况变得更加复杂。其中一些集体激发以所谓的混合激发形式相互对话。电磁子就是这样一种混合激发。电磁子之所以得名,是因为它能够利用光的电场激发原子自旋,这与传统的磁子截然不同:这为众多技术应用带来了令人兴奋的前景。然而,人们对它们在原子层面上的秘密生活还不甚了解并联组合机构单层滑动轴承。

  论文第一作者 Hiroki Ueda 在 SwissFEL 的新 Furka 实验站工作 在 Furka 实验站,Ueda 及其同事利用软 X 射线揭示了电磁子产生过程中的自旋运动,补充了 Bernina 实验站对晶格振动进行的硬 X 射线测量。资料来源:保罗-舍勒研究所/马库斯-菲舍尔

  物理学家们一直怀疑,在发生电磁子时,晶格中的原子会摆动,自旋也会摆动,这种激发本质上是声子和磁子的结合。然而,自 2006 年首次提出以来,只有自旋运动得到了测量。晶格中的原子是如何运动的--如果它们真的运动的话--一直是个谜油石。人们对这两种成分如何相互交流的理解也是如此自由振动。

  现在,在瑞士 X 射线自由电子激光器 SwissFEL 上进行的一系列复杂实验中平面包络环面蜗杆,PSI 的研究人员为拼图增添了这些缺失的部分。PSI显微镜和磁学小组负责人乌尔斯-斯陶布(Urs Staub)解释说:随着对这些混合激发如何工作有了更好的了解,我们现在可以开始研究在超快时间尺度上操纵磁性的机会。

  在 SwissFEL 的实验中,研究人员使用太赫兹激光脉冲在多铁六价铁晶体中诱发电磁子。然后,他们利用时间分辨 X 射线衍射实验拍摄了原子和自旋如何响应激发而移动的超快快照。这样,他们既证明了晶格内的原子确实在电磁子中移动机床夹具,又揭示了能量是如何在晶格和自旋之间传递的。

  他们研究的一个惊人结果是,原子首先移动,而自旋移动的时间稍晚。当太赫兹脉冲撞击晶体时,电场推动原子运动,引发电磁子的声子部分。这种运动会产生有效磁场,进而移动自旋。

  我们的实验发现,激发并不会直接移动自旋。以前还不清楚是否会出现这种情况,SwissFEL 光束线科学家、论文第一作者 Hiroki Ueda 解释说。

  更进一步,研究小组还可以量化声子分量从太赫兹脉冲中获得了多少能量,以及磁子分量通过晶格获得了多少能量。Ueda 补充说:这对未来寻求驱动磁性系统的应用来说是一个重要信息。

  他们发现的关键是,能够在瑞士自由电子激光器的硬X射线光束线和软X射线光束线的互补时间分辨X射线衍射实验中同时测量原子运动和自旋。

  研究小组在伯尔尼纳实验站利用硬 X 射线研究了原子在晶格内的运动。最近开发的实验站装置包括专门设计的样品室,可以在极低温度下利用太赫兹场在固体中进行独特的超快测量。

  为了研究自旋运动,研究小组使用了对磁性系统变化更为敏感的软 X 射线。这些实验是在 Furka 实验站进行的厨房用品,该实验站最近刚刚投入使用。通过将 X 射线能量调整到材料中的共振,他们可以特别关注来自自旋的信号--这些信息通常会被掩盖。

  仅在伯尔尼纳测量声波部分就是向前迈出的一大步。同时还能利用富尔卡获取磁运动,这种实验可能性在世界上几乎绝无仅有,斯陶布评论道。

  Ueda、斯陶布及其同事提供了对电磁子微观起源的理解。这种理解不仅对这一物理过程很重要,而且在更广泛的意义上也很重要。

  晶格和自旋之间的基本相互作用是许多物理效应的基础,这些物理效应产生了不寻常的、可能非常有用的材料特性:例如高温超导性。只有更好地了解这些效应,才能更好地进行控制。

  • 点击这里给我发消息
  • 点击这里给我发消息
  • 点击这里给我发消息
  • 点击这里给我发消息